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Abstract manner. Furthermore, the precision requirements could
have been met with less than half the data acquired.

We have applied formal experiment design and

analysis to optimize the measurement of temperature in
a supersonic combustor at NASA Langley Research
Center. We used the coherent anti-Stokes Raman F

spectroscopy (CARS) technique to map the temperature k
distribution in the flowfield downstream of an 1160 K, K

Mach 2 freestream into which supersonic hydrogen fuel n

is injected at an angle of 30 degrees. CARS

thermometry is inherently a single-point measurement p
technique; it was used to map the flow by translating
the measurement volume through the flowfield. The r
method known as "Modem Design of Experiments"
(MDOE) was used to estimate the data volume R2

required, design the test matrix, perform the
experiment, and analyze the resulting data. MDOE x
allowed us to match the volume of data acquired to the y

precision requirements of the customer. Furthermore, z

one aspect of MDOE, known as response surface t_
methodology, allowed us to develop precise maps of 0

the flowfield temperature, allowing interpolation
between measurement points. An analytic function in
two spatial variables was fit to the data from a single

measurement plane. Fitting with a cosine series
bivariate function allowed the mean temperature to be CIHW

mapped with 95% confidence intervals of ±30 K, df
comfortably meeting the precision requirement of +50 LOF

K specified prior to performing the experiments. We MDOE
estimate that applying MDOE to the present experiment MSE
saved a factor of five in data volume acquired,

compared to experiments executed in the traditional
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Nomenclature

ANOVA
CARS

PE
PIHW

RSM

SS

confounding

Fcrilical

ratio of selected mean square values
number of regressors in a model (p-I)
kelvin

number of data points used to fit a

response surface model
number of parameters in a model,

including intercept (k+ 1)
radial axis from center of fuel jet, in

polar coordinates
Ratio of explained to total sum of

squares
spanwise axis in duct
vertical axis in duct

streamwise axis in duct

standard error in the regression

azimuthal axis about center of fuel

jet, in polar coordinates

analysis of variance
coherent anti-Stokes Raman

spectroscopy
confidence interval half width

degrees of freedom
lack of fit

modem design of experiments
residual mean square error

(unexplained variance)

pure error
prediction interval half width
Response Surface Methodology,

Response Surface Modeling
sum of squares

Executing an experiment so that the
change in response cannot be

uniquely attributed to a specific factor
A threshold F statistic indicating

minimum statistical significance
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level

LOFF

model F

model mean

square

p statistic

parameter space.
design space
population

sample
site:

Specific setting of an independent
v_able

ratio of lack of fit to pure error

components of unexplained variance
ratio of model mean square to
residual mean square

variance that can be explained by
model

probability that a corresponding F
statistic is not significant

Range of independent variable levels

a theoretical construct representing
conceptually all the possible

observations of a system
a discrete number of observations

Specific location in the design space
(specific combination of independent
variable levels)

Introduction

Optical measurement techniques are frequently
used to study combustion, chemical reactions, plasmas,

and aerospace-related flow phenomena) These

techniques can be characterized as either single-point or
imaging techniques. Single-point techniques are

generally more accurate and can provide simultaneous
measurements of multiple gas properties compared to
imaging techniques, hnaging techniques, on the other
hand, provide spatial visualization of the flowfield,

which is key to understanding important fluid
mechanical and chemical processes. A common

approach for mapping flowfields with high
measurement precision is to translate a single-point

technique's measurement volume around the flowfield

of interest, assuming flow repeatability. Unforamately,
this is a time-consuming process that makes this

method of testing in wind tunnels very expensive. This
paper investigates a method that would optimize this
strategy, allowing a substantial reduction in cost. The

method is known as "'Modern Design of Experiments,"
or MDOE. Specifically, we have used MDOE to
optimize single-point coherent anti-Stokes Rmnan

scattering (CARS) temperature measurements in a
supersonic combustor.

The foundations of MDOE go back to the early
part of the 20 thcentury where formal experiment design

was developed for agricultural experiments by Fisher
and others.' Their methods allowed experiments to be
designed and executed that minimize the effects of

systematic errors. In the 1940s, Box and coworkers 3
developed "response surface methods" wherein an

analytic model was fit to the experimental data and then
tested. 3"4 This advancement allowed substantial

improvements in precision compared to the state of the

art at the time. Taguchi and others popularized the
formal experiment design methods in the late 1970s and

1980s. Many industrial corporations adopted Taguchi's
methods and some forms of his methods are still in use

today. However, the aerospace instrumentation
industry made very little use of formal experiment
design and analysis until the mid-1990s. At that time,

MDOE began to be adopted by a few researchers at

NASA and elsewhere. Today the methods are gaining

acceptance in the aerospace instrumentation industry.
Since 1997, for example, MDOE has been used in over

40 (mainly wind tunnel) tests here at NASA Langley
Research Center. 5 MDOE is used to optimize

parametric studies while designing scramjet engines. 6

Lockheed Martin recently used MDOE to optimize
conformal fuel tanks on an F-16. 7 NASA Langley

Research Center recently began using MDOE to

calibrate its model balance systems, replacing a method
that had been used for several decades, s MDOE has

been used in these wide ranging applications for a
variety of reasons to be outlined in detail below. These

have to do with reduced costs, improved accuracy,
deeper insights into the underlying processes, and
avoidance of systematic errors.

In the field of laser-based measurement techniques.
great effort is expended to improve the measurement

precision of a technique by a factor of two. When such

advancement is made, the community at large quickly
adopts it. For example, modeless dye laser designs 9_°

allowed the precision of CARS temperature
measurements to be improved by about a factor of two.

Now, the majority of CARS experiments being
performed today (at least in the USA) use that

technique. Considering the past successes of MDOE
and the continued desire to improve measurement

precision, we have applied MDOE to optimize the

measurement of temperature in a supersonic combustor
with the CARS technique. We believe that this is the

first such application of MDOE to optimize a single-
point laser-based measurement experiment.

Conventional Experimental Design and Execution

Before discussing MDOE in detail, conventional

experimental design and execution will be reviewed
briefly. Conventional laser-based measurements often

begin with a loosely defined plan to "'characterize a

flowfield as well as possible" given the constraints
(time, money, hardware limitations, etc). Measurement
locations are often determined in an ad hoc manner,

wherein the experimentalist attempts to "look where the

interesting flow physics is." Measurements are usually
taken sequentially to minimize the time required to
move between set points (locations in the flow). For

example, the measurement point is sequentially stepped
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across the flowfield of interest. Care is often taken to

obtain enough repeated measurements to produce a
statistically significant mean and standard deviation of

the data allowing turbulence parameters to be
determined. The experiment frequently ends when
either the allotted money runs out, time runs out, or the

experimentalist decides (often arbitrarily) that he has
acquired enough data.

The primary product of this research is usually a
thesis, a conference paper, or a journal article that

presents graphs, tables, probability distributions, and/or
contour maps chosen to communicate the important

physics of the flowfield. Uncertainty analysis is
sometimes an afterthought. Other scientists wanting to
obtain these data either need to contact the authors for a

software copy of the data set or otherwise scan in or

type in tabulated data from the paper.

Modern Design of Experiments (MDOE)

Modern design of experiments recommends a
different approach on many of the issues described in

the previous section. For example, a proper MDOE
experiment design begins with a quantitative statement

of the objective or objectives of the experiment. The
objective is formulated after a great deal of

consideration because the design of the experiment will

depend strongly on this objective. For example, it is
critical to know how the data will ultimately be used

(e.g., compared with a computational fluid dynamics
code). This aids in formulating specifications that can

be expressed in the specific objectives and which help

define quantitative exit criteria.
Once the objectives have been determined, an

experiment can be designed that is optimized for
achieving these specific objectives in the least time and
with the lowest cost. Considerations during the design

phase of the experiment include: identification of the
range of the independent variables to be investigated

(the parameter space), the selection of the measurement
sites, and the volume of data to be acquired. See, for

example, Eq. (1), which was used in this experiment to

estimate data volume requirements as will be described
more fully below. _ If the cost to acquire the minimum

volume of data needed to meet test 'objectives exceeds

the budget allotted for the experiment, then one knows

prior to the start of the experiment that either the
resources must be increased or the objectives of the

Data volume specifications vary according to the specific
requirements of the experiment. The equation referenced here
applies to the common situation (which applied in the current
study) where a specified precision is the dominant
requirement. Other variations on this formula would be used
to estimate data volume requirements in other circumstances,
such as when the dominant requirement is to resolve specified
differences in one or more response variables.

experiment must be scaled back. This knowledge alone
can save considerable waste of resources. The result of

the design phase of the experiment is a test matrix that
describes the combinations of independent variables
that will be tested.

During execution of the experiment, MDOE
markedly differs from the conventional approach. In

conventional experimentation, independent variable

levels are typically set for convenience in some
monotonically increasing order. For example, to
measure the temperature distribution across a duct, the

conventional approach is to start on one side of the duct

and progress systematically across until the opposite
side is reached. Unfortunately, this means the

independent variable is changing systematically with

time. It is therefore impossible to distinguish response

changes that are due to the changes in independent
variable from changes due to any other factor that

might be changing with time. In MDOE testing, these
systematic patterns are avoided. Instead, the set points
determined in the design phase are executed in random

order. Randomization decouples changes in

independent variables from time. This enables us to
distinguish the legitimate independent variable effects
we seek to study from such time-varying systematic
error sources as instrumentation drift, thermal effects,

etc.
To illustrate the benefits of randomization, we have

numerically simulated a temperature-measurement
experiment. Suppose it is desired to measure the

(quadratic) temperature profile across a duct.
Furthermore, suppose that during the time we obtain
our measurement, the temperature everywhere in the

duct is increasing by 20 K between measurement points
because of an undesired, uncontrollable long-term

temperature drift. Using the conventional approach

would produce the results shown in Fig. I. A quadratic
curve fit to the measured temperatures is shifted away

2500
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Fig 1.
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Simulated temperature distribution in a duct
Measurements performed in sequential order while the
temperature is increased 20 K between measurements No
random noise is superimposed
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Fig. 2. Simulated temperature distribution where the order of
execution of the experiment has been randomized. The
temperature is increasing 20 K between measurements. No
random noise is superimposed.

from the true average temperature. This is because the

data on the left side of the graph falls below the true

average temperature and the data on the right lies
above. During execution of this experiment, the
measurement location was confounded with time,

which has induced a systematic error in the results.
Performing the same experiment with the same

measurement locations chosen in random order yields
results shown in Fig. 2. The scatter in the data is larger
than in Fig. I because randomization has converted the

systematic error into an additional component of
random error. However, a quadratic curve fit through

the data shows that the true average temperature was

recovered, as desired. We can always acquire more
data to reduce the random error if the precision
requirements of the test so dictate. The important point
is that randomization allows us to recover the true

relationship between the independent and dependent
variables, which is the raison d'rtre for empirical

investigations. Note also the important fact that
randomization defends us against all systematic errors
variations, whether foreseen or not.

Replication is another important tactic that is

implemented during the execution of an MDOE

experiment. Replication is the process of obtaining
repeated measurements at the same set point of
independent variables (same x. y location, for example).
True replicates cannot be obtained one after the other.

Instead the set point must be changed to another value

and later returned to the original measurement point to
provide an opportunity for all potential sources of

random error to occur, including set point error, for
example.

Replication has two benefits. First, repeated
measurements increase the data volume. The

uncertainty in the final result decreases with the square
root of the number of measurement points under
commonly occurring experimental conditions. The

second reason for replication is that not all of the

variance in an ensemble of data can be attributed to

known changes in the independent variables. After
accounting for all known independent variable effects,

there is always some residual unexplained variance that

is responsible for uncertainty in the experimental
results. Replication allows us to partition this
unexplained variance into a component attributable to

random error in the data, and another component that is

attributable to analytical errors in defining the
relationship between the dependent and independent

variables. We call these two components of
unexplained variance "pure error" and "lack of fit", and

we will have considerably more to say about them
below in the discussion on response surface
methodology.

A third tactic that can be implemented during

execution of an experiment is called blocking.
Blocking involves partitioning the data set into blocks,

usually differentiated by time. For example, during an
experiment performed over several days, the data could

be blocked by day, which would allow day-to-day
variations in the experiment to be identified and
accounted for. Without blocking, these day-to-day
variations would appear as systematic errors.

After the experiment is completed the data is
analyzed using response sur#ace methods (RSM). _5 A

response surface is an analytic model having p
adjustable constants that are fit to the n measurement

points, often using the method of least squares. Each
proposed mathematical model is fit to the data and then

evaluated with a variety of different statistical tests and
other criteria. Once a model passes these tests it is a
candidate for testing against data obtained during the
experiment but which were withheld from the fit. The

model must successfully predict the test data a
statistically significant number of times to be

considered a valid model representation of the data. If
a linear regression model passes all these tests, then the

statistical uncertainty in the mean prediction of the

model, averaged over the range of independent
variables, can be estimated from:

, (p/)'CIHIl_SO/o = 2o" n 2 (1)

where (_'IHW95% is the 95% confidence interval half

width and o is the fit standard error, which is

independent of the model if the model is a good fit to

the data. In the limit that p = 1, so that only the mean
value of the data is determined, this formula predicts
the familiar 95% confidence interval half width for the

sample mean. Typically, more complicated models are

used, ranging from linear (p = 2) to quadratic (p = 3) to
higher order polynomials, to series expansions such as
Fourier, Chebychev, and others. Note that while this

equation computes a confidence interval averaged over
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Fig 3. Partitioning of Variance A and B are arbitrary
independent variables.

points used to fit the model, the actual confidence
interval varies over the surface. The CIHW95_ is

typically smaller near the middle of the range of

independent variables and larger near the edges where
there is less data.

One method used to evaluate the fit quality of

potential models is known as analysis qic variance, or
ANOVA. _4ll In general, variance provides a

quantitative measure of the variation in a quantity. To
quantify the variance the squares of the difference
between each sample and some reference quantity are

added (producing a "sum of squares", SS) that is
divided by the number of degrees of freedom, df. The

df represent the minimum points needed to uniquely
quantify the sum of squares. Variance is also called

"'mean square error." To compute the "total variance"
the reference quantity is the mean of all the samples.
Alternately, one can compute the "unexplained

variance" by using the model prediction as the

reference quantity. Similarly, the "explained variance'"
can be determined by computing at each measurement
location the difference between the value of the model

and the mean value of the model averaged over all
measurement locations and dividing by the number of

degrees of freedom. In this way, the variance can be
partitioned into its components, which helps quantify

the quality of the fit. Partitioning of variance also helps
us to interpret the model to derive a better physical
understanding of the process being studied. Figure 3

summarizes the partitioning of variance and shows that
the total variance can be partitioned into explained and

unexplained components. The explained variance can
further be partitioned into the individual model

parameters. This can be useful, for example, to
determine which model parameters dominate the fit, or
to determine which interactions between independent

variables are significant and which are not.

Partitioning the unexplained variance into "lack of
fit" and "'pure error" components is an important part of

determining fit quality. The pure error component of

the unexplained variance is determined from replicated
measurements. Pure error variance quantifies the
chance variation inherent in the system. An accurate

estimate of the pure error is important because the part

of the unexplained variance that cannot be attributed to
pure error must be attributed to lack of fit. Lack of fit is

the inability of the model to fit the data accurately. If
the lack-of-fit component of the unexplained variance is

large compared to the pure error component, the

adequacy of the model is called into question.
Partitioning of variance provides several figures of

merit from which the quality of the fit can be judged.
The Model F-statistic is defined as the ratio of

explained variance to the unexplained variance. This
parameter provides an estimate of signal-to-noise ratio,
which we would like to be a large number. A common
rule of thumb for an adequate signal-to-noise ratio 3 is

that the F-statistic should be greater than 10" b'_,,,c,/,

where /:_,,,c,1 is tabulated in standard statistical tables
for various combinations of model and residual degrees

of freedom. It represents the smallest ratio of explained

to unexplained variance that can be resolved with a

specified level of confidence. Figure 4 shows a
computation of Fc,_,c,t for a range of experimental

parameters that would be expected in the present
experiment. A confidence level of 95% has been
assumed. Fc,,,_,u varies with the number of terms in the
model but was generally less than five for the models

examined in the present study. So, any fit having an

F-statistic > 50 passed this test.
Another figure of merit is the Lack-of-Fit (LOF)

F-statistic. This is defined as the ratio of the LOF

variance to the pure-error variance. If this ratio is near

unity then there is unlikely to be significant lack of fit.
In other words, statistically, it is a good fit. An
associated statistic is called the LOF p-statistic, which

describes the probability that the measured LOF
F-statistic could be as large as it is due just to random
error. A small LOb" p-statistic (less than 0.05 by one

common convention) argues against a good fit.

0 10 20 30 40

Model Degrees of Freedom

Fig. 4. Computation of Fcmi¢,,Ifor the F-statistic test.
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Fig. 5 Simulated temperature data to illustrate the concept of
lack of fit. Random noise with a standard deviation of I00 K

of has been added to the same "'true average temperature"
shown in Fig. 1.
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Fig. 6. Simulated temperature data to show Failure of' the
MtMel F-statistic test. Random noise with a standard
deviation of 500 K of has been added to the same "true
average temperature" shown in Fig. 1.

Figures 5 and 6 illustrate the concepts of lack of fit
and signal-to-noise ratio (Model F-statistic test).

Figure 5 shows two models that have been fit to a set of
simulated experimental data that includes random
noise. Though the first-order model represents a best

least squares fit to the data, it shows significant
deviation from the data at most locations. In particular,
the deviation between the first-order model and the data

is much larger than the scatter in the data, so the LOb"

F-statistic would be large for this fit. The second-order
model, on the other hand, fits the data very well. More
of the difference between the model and the data is due

to chance variation in the data than to lack of fit, so the

LOF F-statistic would be relatively small.

Figure 6 shows an example where the scatter in the
data is much larger (500 K standard deviation). In this

case the Model F-statistic is not large enough to exceed
our criterion of 10*F,,,,,,,/and the model fails the lack-

of fit test. The large scatter would be revealed by the
pure-error component of the unexplained variance, and

would suggest that more data might improve the fit. If
the pure error were small, we would have to attribute
the lack of fit to an inadequate model, and would

therefore have to fit a more elaborate model - typically
one with higher-order terms.

Another figure of merit is t72. This is the ratio of

the explained sum of squares to the total sum of squares
(where the stun of squares is equal to the variance times
the number of degrees of freedom). R 2 provides an

estimate of the fraction of the variance that is explained
by the model. For example, ifR 2 - 0.8, then the model

is said to explain about 80% of the variance present in
the data.

Graphs of residuals also provide information about

fit quality. Residuals are the difference between sample
measurements and the model prediction. Residuals

should not show any trends when graphed against any
of the independent variables, the model predictions, or

time. If substantial trends are observed in residuals

then the model probably does not represent the data
adequately. Large residuals ("outliers") should be

carefully examined, but should not be deleted without
justification. All information provided by the data
about the quality of the fit is carried in the residuals,

and while an outlier may signify a "bad" data point, it
may also identify an important deficiency in the model.

If the model passes all the above tests, one needs to
determine whether the uncertainty, specified for

example by Eq. (1), meets the test requirements. If the
requirements are not met, then it is possible that another
model could be found that would fit the data better,

resulting in an acceptably low level of uncertainty.
(Note that this implies an a-priori definition of

"acceptable," which is a standard requirement in

MDOE testing.) A better model can often be found by
transforming either the dependent variable or one or
more of the independent variables. This can improve fit

quality or reduce the number of parameters in the
model, thereby reducing the uncertainty.

If the model meets the precision requirements then
it is a candidate for testing against data withheld from

the fitting process. Typically, _5% of the data is
withheld to assess model adequacy. The model must

successfully predict the temperature in a statistically
significant fraction of trials for the model to be

accepted. The model is said to successfully predict the
value of a measured data point if that point agrees with

the model prediction within the model prediction
interval. For a model with negligible lack of fit, the

95% prediction interval half width, PIHW95o,, is

approximately equal to 2_ where _ is the standard error

in the fit. For example, suppose _ = 100 K and the

model prediction at a given site is 1000 K. There is no

more than a 5% probability that a confirmation point
would fall outside the range of 800 K and 1200 K due

to ordinary chance variations. However. just as we

6
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Fig 7 The minimum percentage of trials expected to be
successfully predicted if there is at least a 99% probability
that the number of successful confirmations is consistent with

the 95% prediction interval of an adequate model.

would not require 100 tosses of a coin to produce

exactly 50 heads in order to declare the coin fair,
neither do we require exactly 95% of all confirmation

points to fall within the 95% prediction interval.
(Surely 94 successes out of 100 trials would not

invalidate the model, just as it is not unlikely that 96
points might fall within the 95% prediction interval

half-width in any one set of 100 confirmation trials.)
Just as it happens that 99% of the time, a fair coin will

produce between 37 and 63 heads in 100 trials, so it is
that there is a 99% probability that in 100 trials, 89 or

more confirmation points (not 95!) will fall within the

95% prediction interval of an adequate model. For a
lower number of trials, say 10 trials, only seven or more
successes are required. Figure 7 reveals the minimum

percentage of successful confirmations required of a
model for there to be at least a 99% probability that this

percentage is consistent with the 95% prediction
interval of an adequate model. This percentage is
graphed in Fig. 7 versus the number of trials.

The payoff for doing all this extra work -
designing the experiment, acquiring the data in random

order, and then analyzing the data with RSM - can be

profound. First, there is usually a substantial
improvement in accuracy, particularly, avoidance of
systematic error because of randomization. Second, the
entire data set can be compactly represented by an

equation and a handful of constants that can be used by
the customer to compute the dependent variables

anywhere in the parameter space. Third, and most

important, there is a marked improvement in precision
compared to conventional methods because of using

response-surface methodology.
To illustrate the improvement in precision possible

with MDOE, Fig. 8 compares MDOE to a conventional

experiment where replication has been used in both

experiments to improve measurement precision. All of
the curves assume the same number of data points

(1000) and same standard deviation in the data (100 K).

Note that for measurements with errors that are

normally distributed about a mean of zero, the 95%
confidence interval half-width of an n-point sample is

approximately 2_/(nr2). The corresponding value for a

fitted surface varies over the surface, but its average
value scales as pt2. See Eq. (1). For a small number of

measurement locations (for example, three), the

conventional single-point method provides comparable
uncertainty to an MDOE response surface fit having

three parameters. In this case, the 1000 points are

spread equally among three sites and the 95%
confidence interval half width in both cases is -10 K.

Suppose, however, that the flow may have a
substantial amount of spatial structure that one would

like to map. If the number of measurement points is
increased, the number of measurements per location

decreases accordingly. Consequently, the uncertainty

estimated from data acquired at only one location will
have a corresponding increase in measurement

uncertainty. On the other hand, the MDOE method
maintains a constant measurement uncertainty,

assuming that the same three-parameter model is used.

If a higher order model is used to fit a more
complicated flow structure, the simulation shows that

MDOE still provides a marked increase in precision
compared to the conventional single-point statistics
method. For the case of a 10-parameter model used to
fit data obtained over 100 independent spatial locations

there is more than a factor of three improvement in

measurement uncertainty. Alternately, MDOE could
obtain the same measurement uncertainty as the

conventional method with nearly 1/10th the number of

data points! That amounts to a substantial cost savings.
In this paper, we use the term "'costs savings"

loosely to mean reduction in the number of

lO0

8o

4o

o

_Single Point

m. - MDOE, p = 30

_MDOE. p = lo

0 50 1oo 150 200
Number of Spatial Locations

Fig, 8. Comparison of measurement uncertainty (95%
confidence interval half widths) between MDOE and
conventional single-point statistics as a function of the
number of spatial locations probed. The total volume of data
is held constant at 1000 points. A I00 K standard deviation is
assumed.
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measurementpointsrequired.The real costs of doing
experiments can be computed many different ways, and

often involve a large initial investment to build the
facility, for example. A comprehensive analysis of all

such costs is beyond the scope of this paper.
Additionally, it is important to note that randomization

and replication usually reduce the rate of acquisition of
data, offsetting some of the reduction in costs.

However, in many prior applications of MDOE,
substantial cost savings have been achieved. 5

One might question how simply fitting a curve
through the data would increase its precision. It

appears too good to be true. The key point is that by
fitting a curve through the data, information is shared

from neighboring spatial locations. Suppose you have
obtained temperature measurements at five locations

along a line where the temperature is slowly increasing.
If another measurement is desired between two of the

existing points, it would not take many measurements
to establish whether the new location agrees with the

trend established by the other points. Information is
shared and fewer measurements are required to achieve
the same uncertainty. Using the single point method,
the experimentalist starts "'from scratch" at each new

spatial location and many measurements are required to

reduce the uncertainty in the mean.

Considerations for Mapping Temperature in a
Supersonic Combustor

The description above outlines the way an ideal
experiment would be designed, executed, and analyzed
using MDOE. Unforumately, some compromises that

prevented the full implementation of MDOE were
required in the present experiment. In this section, we

briefly describe the experimental setup as it relates to
the current paper and then discuss how MDOE was

implemented.
Experiments were performed in NASA Langley

Research Center's Direct-Connect Supersonic
Combustion Test Facility (DCSCTF), which is a

vitiated, blowdown wind tunnel. The supersonic
combustor model consisted of a short rectangular duct

containing a rearward-facing step, after which gaseous
hydrogen fuel was injected. The supersonic combustor

operated with a steady flow time of 10-20 seconds.
We used planar BoxCARS to make single-shot

broadband nitrogen CARS temperature measurements
in the combustor. 12 During the flow time, 100-200
single-shot temperature measurements were obtained.

CARS spectra, acquired from an intensified CCD linear

array attached to a spectrometer, were fit with a library
of theoretical curves for a range of temperatures and N2

concentrations to determine the gas temperature on
each pulse of the laser. Thus, a database of x, y, z
locations, temperatures, and N2 concentrations was

generated for five measurement planes in the flowfield

for unpiloted operation and three planes when H2 pilot
fuel was injected upstream of the main fuel injection.
A series of measurement in a stable Hencken fiat-flame

burner determined that the precision of the CARS

measurement technique was i-6% of the measured
temperature (standard deviation of 3%). The flame

measurements reported in Ref 12 showed that the
CARS system produced temperatures that were

systematically high compared to calculated values by
-150 K in the rich region of a hydrogen/air flume.

Good agreement was found for stoichiometric and lean
flames. However, this experiment was recently
repeated and this systematic error was not observed.

The mean measured temperatures agreed with

computed values to within 70 K on average over a
range of stoichiometries from 0.5 to 4.0 and no

systematic bias in the measured temperatures was
observed. _3 The systematic bias observed in Ref. 12 is

thought to be caused by spatial nonuniformities present
in the flame, though this point is still under
investigation.

Figure 9 shows the resulting temperature maps
obtained in the supersonic combustor. '2 Briefly

summarizing the results, the vitiated air flow enters the
test section at about 1160 K. For the unpiloted case,

cold fuel, with a stagnation temperature of about 300 K,
is injected between planes 1 and 3. Evidence of a small

umount of combustion occurs around the periphery of
the fuel jet in plane 3 where the temperature exceeds
the incoming freestream value. The temperature of the
cold jet increases between planes 3 and 5. but most of

the combustion occurs between planes 5 and 6. Planes

6 and 7 show hot combustion products on the top and
bottom of the duct and remnants of the cold fuel jet
near the middle of the duct.

The current paper describes in greater detail how

MDOE was applied to this experiment and how the
analytic surfaces were fit to the data, to produce the
temperature maps shown in Fig. 9. The analysis in this

paper is limited to plane 3, unpiloted operation, which
was thought to be the most challenging measurement

plane to analyze due to the large temperature gradients
present.

The objectives for the present experiment were
determined from interviews with the customer, a

computational fluid dynamics expert who has
subsequently computed the flow. _4 Together it was
decided that the goal of the present experiment would

be to map the flowfield with a specified precision, in as
many planes in the combustor duct as resources would

permit. From discussions with the CFD expert, we

established ±50 K as the required 95% confidence

interval for model predictions. For resource planning
purposes, we computed the volume of data necessary to
produce a model with such a 95% confidence interval,
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Fig. 9. CARS temperature maps in the combustor duct. See
Ref. 10 for details.

averaged over all the points used to fit the model. Also,
from prior measurements in the same facility t5 we knew
that turbulent fluctuations in the flow had a standard

deviation of about 300 K. Furthermore, observing the

spatial distributions in past measurements, we
determined that we would probably fit the data with
response surface having approximately 20 parameters.

Using Eq. (1) the required number of data points was
estimated to be 2880 per measurement plane.

If we had instead used the conventional approach

of acquiring many temperature measurements at a

single location to reduce uncertainty in the mean, and if
we targeted the same precision requirements, 144

temperature measurements would have been required at
each site. The MDOE budget of 2880 points per plane

then corresponds to only 20 measurement locations if
the conventional method had been used. These would

perhaps be enough spatial locations to measure the

temperature along two or three lines in the flowfield.
But, for the same cost, MDOE allows us to map the

temperature over the entire plane.

The data acquisition rate was 10 Hz and the tunnel

typically operated for 10-20 seconds per run, so that
-100-200 shots could be acquired per run. Thus a
minimum of 20 runs would be required per

measurement plane to meet the precision requirements.
Because the tunnel must be allowed to cool down

between runs, we were limited to four or five runs per
hour. The CARS apparatus and the DCSCTF require

about an hour each of set-up and takedown time. So, an

entire day was just enough time to map the temperature

in a single plane with the required measurement
precision. We obtained between 2000 and 4000

instantaneous temperature measurements per plane.
Given a data rate of one plane per day, our budget

limited the number of measurement planes we could

acquire. Budget constraints included real dollar costs

for facility time, cost for the H2 gas, as well as
availability of staff to run the tunnel, run the CARS

system, and ensure the safety of the workers and
facility. The stated objective then was "to map the

mean temperature in five or more planes of the
supersonic combustor with a measurement precision of
better than ±50 K with 95% confidence." In the end,

seven measurement planes were acquired over 10 days

of operation. This occurred over about two months of
calendar time.

The next aspect of the experiment design to be

considered was site selection. Ideally, we would have
selected sites according to the D-optimal design, _6
which has several features that make it a desirable

measurement pattern. Among other benefits, the
29-point D-optimal design, shown in Fig. 10, has

symmetry properties that maximize the accuracy of fit
coefficients used in response surface methodology.

Ideally, the CARS measurement volmne would be
translated to one of these locations and a single

temperature measurement would be obtained. Then the
measurement volume would be translated to one of the

other sites, chosen at random, where a second

temperature measurement would be obtained, and so
on. Each location would be revisited many times,

providing the number of replicates indicated at the
locations in the figure.

Unfortunately, in the present experiment the typical

time required to translate between points in the
measurement volume is about 20 times longer than the
0. I seconds between measurements. This data rate of

10 Hz is set by the repetition rate of the laser. If we

were to use the full randomization preferred by MDOE,
our data rate would be cut by a factor of 20, which

would have prevented us from achieving our precision

goals without exceeding our resource budget.
A compromise solution was found that

implemented as much randomization as possible. Two

types of measurements could be performed at the
maximum data rate. One type of measurement was

obtained by scanning the probe volume horizontally or

vertically through the flowfield using a system of

periscopes driven by stepper motors. A second type
was performed at fixed locations in the duct for the
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Fig. 10. D-optimal design for determining optimal locations
for spatial measurements

entire duration of the run. The fixed location

measurement scheme potentially could have been

applied in a D-optimal site selection. However,
performing the entire design would have required 29

runs that would have produced far more data than
required for the precision requirements. We believed

that decreasing the number of set points by a factor of
two, to match the precision requirements, would have

sampled the flowfield too sparsely. So, a hybrid
method was adopted where both types of measurements

- fixed and scanned - were used. Thus, the D-optimal
design was abandoned in fhvor of a rectangular grid.
This was supplemented by six to eight fixed position

measurements, depending on the measurement plane.
All fixed locations were distributed uniformly in the

vertical direction on the spanwise center of the flow.
We alternated randomly between fixed and scanned
runs. We also randomized the directions of the scanned

measurements (up/down or across/back). Figure 11
shows the sites selected for the different measurement

planes in the experiment. For completeness, it should

be mentioned that blocking was not invoked in the
present experiment because no block effects were
identified.

After the experiment was performed, temperatures
were computed from the raw CARS spectra. See Ref.

12 for details of this procedure. The x, y locations of
the measurement volume and the corresponding

temperatures from all runs in a given plane were written
to data files, one line for each individual temperature
measurement.

Two different statistical analysis programs were
used to fit the data: Design-Expert _t6 and

Fig. 11. Site selection for the experiment

TableCurve_3D. 17 These programs have many
common features, including automatic fitting of

surfaces to data and automatic computation of the
statistical figures of merit (Model F-statistic, 1_, etc).
TableCmwe _, however, does not allow model terms to

be removed as easily as Design-Expert s . Removing

model terms is very important in the present application
because reducing the number of terms p increases

measurement precision, according to Eq. ( 1). It is often
found that more than half of the terms in the models are

insignificant. So, by removing these terms one can gain
an increase in precision of a factor of about 1.4.
Unfortunately, the only candidate model functions in
Design-Expert _ are polynomials, whereas TableCurve _

provides thousands of different model forms, including

Chebychev, Fourier, Sine and Cosine Series, etc. Thus,
both software packages were used in the analysis.

Nine different proposed models were evaluated
prior to settling on the best one. For ease of

explanation, these will be described in order of
increasing complexity, rather than the order in which

they were performed. Six different proposed models
were fit to the entire data plane using Cartesian
coordinates: 3 ra-, 4 th-, 5 th-, and 6th-order polynomials
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and two different versions of the Cosine Series

Bivariate Order 6 Function. One proposed model

partitioned the measurement plane into four subregions
and used lower order polynomial models in each

region. A transformation from rectangular to polar
spatial coordinates was used for the other two proposed
models, which were fit with 3%order polynomials in r

and 8. One of these polar coordinate analyses involved

transforming the dependent variable.

During the analysis of the data, three extreme
residuals were removed out of a total of 2829

measurements. There were perhaps 50 smaller
residuals that were nonetheless candidate outliers, but

these were retained because we could not say with high
confidence that these were likely to be the result of

spurious measurements.

Results

Polynomial Fits to Entire Cartesian Surface
Equation (1) shows that the lower the order of the

model (the smaller the p) the better. So the first
proposed model was a 3'°-order polynomial in the two
independent variables, x and y:

T=a+bx +cy+dv 2 +exy+fy 2

+ gx 3 + hx2y + LD/2 + .ly 3
(2)

This equation has 10 free parameters p. Note that it
contains cross terms (e.g., xy. x2y. and xy 2) whose

magnitude describes the interactions between the
independent variables. Fitting Eq. (2) to the

temperature measurements from plane 3 yielded
unsatisfactory results. Four of the model terms were

insignificant and were removed. While the overall
model passed the F test indicating reasonable signal to
noise, it did not pass the lack of fit tests. Visually

comparing residuals showed several systematic trends,
confirming a poor fit. Furthermore, the temperature

surface looked unrealistic (concave up).
The order of the fitting polynomial was increased

sequentially to 4 th-, 5 th-, and 6th-order. Each time, the

model F test passed and the fit improved. These trends
are illustrated in Fig. 12. Notice that the standard error

in the fit, o, decreases with increasing order number:

more terms allow the model greater flexibility to

explain trends in the data. Also note the increase in the
computed CIHW95,,. This trend is caused by the
increase in p as the model order increases. From (1) it

is apparent that pt,2 is growing faster than o is

decreasing. Recall that the computed (7IHW95_ is only
valid if the model fits the data (which none of these do).
The 6th-order model, which has 18 significant terms, is

the only one of these models that passes its statistical

lack of fit test. The 6th-order polynomial temperature

map is shown in Fig. 13(a). Upon close inspection of

the model predictions and the residuals, important
systematic discrepancies between the data and the fit
were discovered. The worst problem occurred at the

center of the cold fuel jet where the model predicted
-350 K whereas the gas temperature measured with

CARS was -250 K. Clearly there is some localized

lack of fit. It is worth noting that we suspect lack of fit
in the model even though it passed the statistical lack of

fit tests. This is probably because there is

comparatively little data in the fuel jet.
The overwhelming majority of the measurement

plane is fit satisfactorily, and a small (but important)
part is not. This is an example of why possessing
subject knowledge is very important for performing

data analysis, and particularly for model fitting.
For comparison with CFD, accurate modeling of

the fuel jet is critical. For this reason, this 6th-order

polynomial fit was deemed unsatisfactory. The next
logical step would have been to use a 7th-order

polynomial model. Unfortunately, the software did not
allow higher than 6th-order polynomial models. So,
another method for improving the fit needed to be
found. The ANOVA figures of merit for the 6'h-order

polynomial and the rest of the fits discussed in the
paper are summarized in Table 1.

Polynomial Fits to Sub-Zones
A method that is commonly used in fitting complex

surfaces is to break the surface up into smaller sub-

spaces. Each subspace can then be fit with a lower-
order model, each having fewer parameters, potentially
resulting in improved fits and reduced CIHW_,5_. We

use this approach and partitioned the measurement
planes into four sub-regions, or zones, as illustrated in
Fig. 14. Zones 1 and 3 were adequately fit by 3rd-order

polynomials. Zone 4, which contains the fuel jet,
required a 4th-order polynomial fit, which did a very

35O
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2O0
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5O

0
3_dOrder 4th _ 5thO,d_ _ (_mler
Polyr_mlal Polvnomlml Polynomial Polynomial

Fig. 12. Trends in ¢y, (7HW,_5o0 and LOF p-statistic with
increasing polynomial order of model
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satisfactoryjob of fittingthe fuelplume. Zone2 ta)9o
provided an interesting result: this region had very little
curvature compared to the chance variations in the data. a0

The overall model F test failed on all polynomial '_'
models attempted in this region. This indicates that ._. 70
there is no significant trend in the data with x or y,

6o
compared to the variability in the data. In this case, the

entire sub-region is best modeled by the mean of the so
data in that region.

In order to compare the quality of this fit to the (D)s°
others reported in the paper, an approximate ('IHWo5_

was computed by weighting the (7HW95_ values fbr the 80
individual regions by the number of points in each
region and dividing by the total number of points fitted.
Table 1 shows that the method fails to reduce the

(YHW95_ compared to the 6th-order polynomial. 60
However, it is a better fit than the 6%order polynomial

because it more accurately captures the most important so

features of the flowfield. Figure 13(b) shows the
resulting temperature map. One drawback of (c)g_

partitioning into sub-zones is evident from the

temperature map: discontinuities in temperature exist at a_
the borders of the zones. This is unaesthetic, but not _'

.E. to
unscientific. The model actually predicts that a given
sample would occur between this surface mean and the 60
±PIHW95_,. This is illustrated in Fig. 15 where a
horizontal slice through the measurement plane is 5o
compared with the model. This slice crosses zones 1,4,

and 3. in that order. The correct interpretation of this (0)90
figure is that the model predicts with 95% confidence

that seven out of 10 new measurements (as described 8o
by Fig. 7) would fall between the dashed lines in the
figure. ._. 70

Model p Ystat PIHW CIHW R=

6 th order polynomial IS 2311 477 37 0,59

Polynomial fits to

four pamtioned

,,.ones

<14 38

Cosine Series
28 185 450 45 064

Bivanate Order 6, # I

Cosine Senes
13 425 447 30 064

Bivariate Order 6. #2

Polar coordinate
6 898 471 22 0.61

transformation

Polar coordinate ,and
6 1038 479 22 0.64

In(T) lransformation

Table I. Summary of fit results tbr select models. P1HW and
('IHW are based on 95% confidence. All models represented
in this table pass the LOF I_'-statistic and P-stattstw tests,
except where noted in the text
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Fig. 13 Temperature maps resulting from fitting different
proposed models. (a) 6_-order polynomial, (b) polynomial fits
to four sub-regions, (c) 27 term cosine series bivariate order 6
function, (d) 12 term cosine series bivariate order 6 function,
(e) polar coordinate transformed data fit with 3_a order
polynomial
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Fig. 15 Comparison between model prediction (four-zone
polynomial model) and single-shot temperatures for spanwise
cut through the flow aty 76.8 mm

Cosine Series Bivariate Model

In an attempt to model the temperature distribution

with a more suitable basis function than polynomials,
the TableCurve '_ program was used to find a suitable

model. A promising model was the Cosine Series
Bivariate Order 6 function. This function was chosen

because it offered a compromise of a very good fit to

the data (based on Model F-statistic, lack of fit F- and
P-statistics, R 2, and standard error in the fit, _) while

having fewer parameters than many of the other
functions. This function is similar to the first few terms

of a Fourier series but contains only cosine functions

and has products of cosines as well as the usual cos(x),
cos(2x), cos(3x), etc., terms. The full 6'h-order model

has 28 parameters. The fit produced by TableCurve _ is

shown in Fig. 13(c).
The ANOVA results for this model suggested that

more than half of the model parameters were

insignificant. Removing these terms would decrease
the ("IHW95% substantially. So, a data file was created
that would allow Design-Expert _ to implement this fit.
This was achieved by creating a spreadsheet that
contained a column for each of the 27 terms in the

model. The functional shape of each term (e.g.,

cos(3x)) was then computed in each column. When the
spreadsheet was read into Design-Expert "_,a model that

was first-order in each of 27 different independent
variables was fit to the data. As expected, after

insignificant terms were removed, only 12 terms plus
intercept remained, so that p = 13. The resulting

temperature map is shown in Fig. 13(d). The fit is

similar to Fig. 13(c). However, because p has been
reduced from 28 to 13, the accuracy to which each of
the coefficients in the model has been determined is

substantially higher. With fewer model parameters,

there is more data per parameter from which to
determine the values of the parameters. As shown in
Table l, the resulting precision is markedly improved:

from _-45 K to +30 K. Figure 16 shows the residuals

plotted against the spanwise direction, x. The residuals

show no significant trends versus x except at the
extremes, confirming that the fit over most of the

surface is good.
Figure 17 compares model predictions and

prediction intervals to the experimental data. The
model fits the general trends of the data very well.
However, the model does not capture every subtlety of

the data. Higher order terms would be required to fit

sharp discontinuities in the data. Such higher order
models would require more parameters and would yield

a higher ("IHW95_.

Variable Transformation: Polar Coordinates

In an effort to reduce the parameter count even
further, we attempted to take advantage of the near-

radial symmetry of the fuel jet. We transformed the x, y
coordinates into radial coordinates: r, O, where r2 (x-

x_#2 _ (y-yo)2 and 0 tanl ((y-yo) (X-Xo)) where care was

taken to add 180 degrees to 8when x xo. Figure 18
shows the result of the transformation. The center of

the coordinate system was chosen to be at the center of

the fuel jet (xo = 108.6 ram, yo = 76.1 mm). Such a
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Fig. 17. Comparison between model predictions and single
shot temperatures for Cosine Series Bivariate Order 6 model
#2. This is a spanwise cut through the flow aty = 76.8 mm.
The thick solid line in the middle is the model prediction.
The two thinner lines above and below the model prediction
are the 95% confidence interval half widths. The thin lines
furthest from the model prediction are the 95% prediction
interval half widths.

transformation greatly simplifies the functional form

required to fit the data. For example, a temperature
profile in the shape of an inverted cone would be very

difficult to fit in Cartesian coordinates; it would require
many high-order terms. But, in polar coordinates, an
inverted cone maps to a planar surface that can be fit by

the simple model, T :- a br. This variable
transformation worked as advertised; the fit order could

be reduced substantially - to 3rd-order - and the number

of parameters could be reduced to six. This resulted in

a low ('IHW95_ as shown in Table 1. Unfortunately,
there were several undesirable consequences of this

method. First, the model temperature trends towards a
large negative temperature at small r, which is
unphysical. The polynomial should be forced to have

zero slope at r = 0. Similarly, when the data is fit in
polar coordinates, it would be desired to have a periodic

boundary condition in O.

A natural logarithmic transformation in the

dependent variable (temperature) was found to correct
the first problem. Fitting ln(T) instead of T forces the
model to be better behaved at small r. This

transformation also causes a significant improvement in
the fit, as evidenced by the increase in Re in Table 1.

Furthermore, it compares much better with the data in
the fuel jet. The resulting temperature map is shown in

Fig. 13(e). Comparing this map with the others in Fig.
13 reveals that an artificial symmetry has been imposed

on the data by the polar coordinate transformation.
Perhaps this is caused by not retaining high enough

order terms. However, we regard with suspicion the
visible circular patterns, particularly the corkscrew

shaped variation in temperature. The residuals provide
further evidence of an unsuccessful fit. The residuals

plotted against Oshow no significant trends, but the

residuals plotted against radius, shown in Fig. 19,
display some weak but significant trends. Even though

this model passes all the statistical tests and has the
smallest CIHW95_, we believe that this model does not

adequately represent the data.

Discussion

The various methods of fitting the data have their
relative merits. While the 6th-order polynomial fit was
easy to perform, it produced a temperature map that

disagreed with the experimental data in a critical region
of the flowfield: the cold fuel jet. Partitioning the
surface into four smaller surfaces allowed lower order

polynomials to accurately fit the experimental data, but

this process was very time consuming and it produced
the second worst ('IHW95_ values of all the fits shown
in Table 1. The Cosine Series Bivariate Order 6

function fit the surface well with a minimum of effort.

However, the large ntunber of model parameters caused

the fit uncertainty to be the worst in Table 1. This
problem was corrected by removing the insignificant
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Fig. 19. Residuals plotted versus radius, r.
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termsin a subsequentanalysis,producinga ('IHW95%
equalto a:30K. Inspectionof residualsshowsno
substantialtrends.Thepolarcoordinatetransformation
oftheindependentvariables,combinedwiththenatural
logarithmictransformationof thedependentvariable
produceda result that had excellentstatistical
properties,but imposedanartificialsymmetryonthe
flowfleld. Also thismodelshowssomesmallbut
substantialtrendswhenresidualsareplottedagainst
radius. We concludethat the modelthat most
accuratelyrepresentsthemeasuredtemperaturesis the
cosineseriesbivariatefunctionwithinsignificantterms
removed.

Afterpassingthesevariouscriteria,themodelis
consideredto bea "'candidatemodel"for validation.
Themodelwastestedagainstaportionof theoriginal
dataselectedatrandomthathadbeensetasideandnot
includedin fittingthe model(5%,or 140points).
Accordingto Fig. 7, to validatethemodel,it must
predict>90%of thetrialscorrectly,oratleast126out
of the140trials.Infact,themodelpredicted128outof
140correctly(or91%),soit wassaidto havepassed
theconfirmationtest.

It isusefultocomputewhethertheMDOEmethod
didin factreducethevolumeof totaldataacquiredin
theexperiment,aspredictedby Fig.8. In a similar
experimentpreviouslyconductedin thesamefacility,
Smithet al._5mappedthetemperaturein a different
supersoniccombustor.Theydeterminedthe mean
temperaturein theconventionalwayby taking-70
replicatesateachof 63pointsofa9 by7grid. If they
hadhadthesamestandarddeviation(_= 223K) asin
thepresentexperiment,theywouldhaveobtained95%
confidenceleveluncertaintiesin themeanvaluesof
temperatureat eachof thosepointsof +53 K. To
further reduce their uncertainty to the +30 K level

obtained using MDOE would have required a total of
225 measurements per location, or -14,000 points

compared to the current experiment in which -2800
points were obtained. MDOE allowed us to get the
same uncertainty with a factor of five fewer points - a
substantial reduction.

in the current experiment, we could have reduced
the data volume by a factor of(50/30) z or -2.5 and still

met the precision requirements of +50 K at 95%
confidence. However, the opposite could also have
been true: If the turbulence level had been twice what

was anticipated prior to the experiment, we would have
failed to meet our precision requirement. So the

amount of data obtained in the current experiment was

probably appropriate. It was ample to protect us against
incorrect assumptions of the nature of the flow, yet it
was not so great as to have incurred substantially more

time and expense than needed to satisfy the quality

objectives of the experiment. However, there is
another, better, solution to the resource scaling

problem. If the CARS spectra could be analyzed as
they were being acquired, or in between tunnel runs,
then a surface fit could be performed as the experiment

progressed. The fit uncertainty would be constantly
monitored. Once the precision requirements were met,

the experiment could be terminated, having acquired

the right amount of data. This approach would prevent
acquiring too much data. The costs saved could then be

used, for example, to study other measurement planes,
fuel flowrates, model configurations, etc.

In addition to the substantial cost savings, MDOE

defended against systematic errors through
randomization. In fact, we did see some trends in the

residuals when plotted against time, a tell-tale sign that

the kind of systematic variation against which
randomization is intended to defend was in fact present

during the experiment. During certain runs, for

example, the gas temperature appeared to be
systematically increasing with time. These trends need

to be analyzed more closely. Nonetheless, randomizing
the order that the data were obtained allowed us to

defend against such bias errors.
Another benefit of the response surface methods

incorporated in MDOE is that the data can be

compactly presented. This facilitates comparison
between the data and theoretical or computational

predictions of the flow, which is frequently an end use

for data obtained using laser-based measurement
techniques. For example, the surface fit for the

13-parameter Cosine Series Bivariate Order 6 model is
shown in Eq. (3):

Temperature =
1068.2 +

103.2 cos(Y')
117.3 cos(2X') +

-91.9 cos(3Y') +
-180.8 cos(4X') +
36.5 cos(5X')

25.2 cos(5Y') +
-45.7 cos(X')cos(Y') +
- 109.6 cos(2X')cos(Y') +

143.2 cos(4X')cos(Y') +
191.2 cos(2X')cos(3Y') +

-48.2 cos(5X')cos(Y') +

139.5 cos(4X')cos(2Y').

(3)

Unfortunately there are certain cultural barriers that

are likely to retard the rate at which the laser-based
measurements community adopts MDOE. The primary
obstacle is the haste with which many scientists in this

field tend to approach experiments. MDOE involves

carefully planning an experiment, which can be time

consuming. However, the time spent in designing a

good experiment is negligible compared to the time
spent trying to make sense out of a poorly planned one.
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But designing an experiment with MDOE seems time

consuming compared to the conventional method, in

which the final design of the experiment often occurs
moments before it is executed. Another barrier to

usefully applying this method is that the user must learn

about certain statistical methods (e.g., ANOVA) that
might presently be unthmiliar. Still another barrier is

the time required to analyze the data, which can
frustrate the natural human tendency to demand a final

result irmnediately upon completion of the experiment.
Nonetheless, we believe that MDOE will gain

increasing acceptance in the laser-based measurements

community as more members of that community
become proficient in its use and more familiar with the
advantages of this method, which include lower costs,

higher quality, and less time to achieve quantitative
performance objectives.

Conclusion

We have applied modem design of experiments

principles to a single-point laser based measurement
apparatus for the first time at NASA Langley Research
Center, and perhaps the first time outright. MDOE
allowed us to scale the data volume to the customer's

precision requirements. One consequence of this

scaling was a large cost savings of perhaps a factor of
five compared to previous measurements perfbrmed in
the same facility. Another consequence of using

MDOE was the minimization of systematic errors. This

was achieved by randomizing the order of data
acquisition as much as possible. Using MDOE allowed
us to map the mean temperature with a 95% confidence

level of±30 K. This is substantially lower than the goal
of ±50 K stated prior to the experiments. In fact, the
precision requirements could have been achieved had

the data volume been reduced by more than a factor of
two.

We plan to more fully implement randomization in

future experiments by redesigning the stepper-motor
driven periscope system. Furthermore, we will
investigate extending the analysis to fit CARS

temperature maps in the third dimension (streamwise
direction), creating an analytic model to predict the

temperature in all three spatial coordinates within the
duct. Another goal is to determine gas density from the

intensity of the CARS signal. This is traditionally a
difficult problem with CARS due to poor long-term

optical stability, because drift in the system's alignment

can cause an apparent decrease in measured density.
MDOE's quality assurance tactics (randomization,
replication, and blocking) are well suited to correct for
this type of systematic bias error.

With minimal modification, the method outlined in

this paper should be applicable to many other similar

experimental methods, such as Rayleigh and Raman

scattering experiments, laser-induced thermal grating
(LITA) velocimetry, sound speed measurements, etc. It

may even be possible to extend the method to imaging
experiments, such as planar laser-induced fluorescence

(PLIF), in an effort to improve measurement precision.
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